This Let $A_{:} = I = [a, b] \leq |R| \neq f: I = |R|$ to Then (1) f 16 globally bounded on I: $M := \sup \{f(z) : \chi \in I\} \in IR$ $m = inf\{f(x) = x \in I\} \in \mathbb{R}$ $(1) \exists x_{*}, x^{*} \in I \quad s, t.$ $f(x_*) \leq f(x) \leq f(x^*) \neq x \in J$ (fattains its max. I min. values) proof. Suppose for contradiction that f 16 not bounded above: Ynth JZnt Is.t f(xn) > n. Jo this, In one has a bounded requence (In) S.t. $f(\chi_n) > n \quad \forall n \in \mathbb{N}.$

By B-W & Order-preserving,
$$\exists x_0 \in [a,b]$$

+ a convergent subsequence (x_{n_k}) with
 $\lim_{k \to \infty} x_{n_k} = x_0$. Since j is do at x_0 , it follows
from the sequended ciritanian that $\lim_{k \to \infty} f(x_{n_k}) = f(y) \in \mathbb{R}$
condraditing $f(x_{n_k}) > n_k \ge \kappa$ if κ . Therefore
 j must be bounded above. Similarly one can
show j is when bounded below. (Thus M , $m \in \mathbb{R}$)
(i). Take $g_n \in \mathbb{I}$ s.t. $M - \frac{1}{n} < f(g_n), \forall n \in \mathbb{N}$.
Similar as $m(i)$, $\lim_{k \to \infty} y_{n_k} = j_0 \in \mathbb{I}$ for some
subseq. Hence $M - \frac{1}{n_k} < f(g_{n_k}) \Rightarrow f(g_n), and$
 conseq . $M = f(g_n), so j_0 here here projects$
 $Note. Do for bounded closed subset A
 $\lim_{k \to \infty} p_{n_k} = \int f(g_n) = \mathbb{R}$ its. Then
(i) Suppose $f(w) f(w) < 0$. Then $\exists c \in (a,b)$ s.t $f(c) = 0$
(ii) $\operatorname{The} f(w) < (w f(w) > k > f(w), here $\exists c \in (a,b)$ s.t.
 $f(c) = k$.$$